Home-> Circuit Analysis-> Passive Filters (example #1)

Passive Filters (example #1)

For the following circuit, determine the type of filter and calculate the corner frequency.

passive filter example problem

1) Determine the transfer function

By the principle of voltage division we have: $$ \mathbb{V}_o = \frac{\mathbb{Z}_L}{R+\mathbb{Z}_L} \mathbb{V}_i $$ $$ \frac{\mathbb{V}_o}{\mathbb{V}_i} = \frac{\mathbb{Z}_L}{R+\mathbb{Z}_L} = \mathbb{H}(s) $$ Recalling that: $$ \mathbb{Z}_L = j\omega L = j\omega 0.1 $$ ...and that: $$ j\omega = s $$ ...we have: $$ \mathbb{H}(s) = \frac{0.1s}{1000+0.1s} $$ Dividing the above expression by 1000 gives us our transfer function:

$$ \mathbb{H}(s) = \frac{(100\times 10^{-6})s}{1+(100\times 10^{-6})s} \qquad,(Eqn\;1) $$

2) Determine the magnitude of the transfer function

Begin by replacing "s" with "jw" in equation #1: $$ \mathbb{H}(j\omega) = \frac{(100\times 10^{-6})j\omega}{1+(100\times 10^{-6})j\omega} $$ The magnitude is as follows:

$$ |\mathbb{H}(j\omega)| = \frac{(100\times 10^{-6})\omega}{\sqrt{1+(10\times 10^{-9})\omega^2}} \qquad,(Eqn\;2) $$

Determine the magnitude at w=0 and w=infinity

Using equation #2 we get: $$ |\mathbb{H}(0)| = \frac{0}{1} = 0 $$ Additionally we have: $$ |\mathbb{H}(\infty)| = \frac{\infty}{\infty} $$ Since the above expression is indefinite we proceed as follows:
Square the numerator and denominator of equation #2 and get the following: $$ |\mathbb{H}(j\omega)| = \frac{(10\times 10^{-9})\omega^2}{1+(10\times 10^{-9})\omega^2} $$ Now we can divide the numerator and denominator by w^2 and obtain the magnitude of the transfer function in the following form: $$ |\mathbb{H}(j\omega)| = \frac{10\times 10^{-9}}{\frac{1}{\omega^2} + (10\times 10^{-9}) } \qquad, (Eqn\;3) $$ Using equation #3 we can now determine that: $$ |\mathbb{H}(\infty)| = \frac{10\times 10^{-9}}{0+10\times 10^{-9}} = 1 $$

Having just determined that: $$ |\mathbb{H}(0)| = 0 $$ and: $$ |\mathbb{H}(\infty)| = 1 $$ We can surmise that this filter blocks low frequencies and passes high frequencies making the circuit a high-pass filter.

Determine the corner frequency

In the previous page we learned that the cutoff/corner frequency for a high-pass filter can be found by setting the magnitude equal to 1/sqrt(2). Therefore we use equation #2 and get the following expression: $$ \frac{(100\times 10^{-6})\omega}{\sqrt{1+(10\times 10^{-9})\omega^2}} = \frac{1}{\sqrt{2}} $$ We now proceed to solve for omega in order to determine the corner frequency. Begin by squaring both sides of the above expression: $$ \frac{(10\times 10^{-9})\omega^2}{1+(10\times 10^{-9})\omega^2} = \frac{1}{2} $$ $$ 20\times 10^{-9} \omega^2 = 1+(10\times 10^{-9})\omega^2 $$ $$ (10\times 10^{-9})\omega^2 = 1 $$ $$ \omega^2 = 100\times 10^6 $$

Corner frequency

$$ \omega = (10\times 10^3) \; \frac{rad}{s} = \omega_c $$

Continue on to passive filter example problem #2...