Home-> Circuit Analysis-> AC Op-amps (voltage/current)

Analyzing AC Op-amp Circuits (Output Voltage and Feedback Current)

For the following circuit, determine Vo and Io (leave answer in phasor form)

AC amplifier circuit

You will notice that the circuit is already displayed in the phasor/frequency domain. Also, by the rules for an ideal op-amp, the inverting and non-inverting input voltages must be equal. Since the inverting input is tied to Vo, then we know that the non-inverting input (Va) must also be equal to Vo. (Hence the label Va=Vo in the circuit schematic found at node 2.)

Apply Kirchoff's Current Law (KCL) at node 1:

$$ \frac{\mathbb{V}_1-6\angle 30^{\circ}}{-j4,000} + \frac{\mathbb{V}_1-\mathbb{V}_o}{10,000} + \frac{\mathbb{V}_1-\mathbb{V}_o}{20,000} = 0 $$ Multiplying the above expression by 20,000 gives us: $$ j5\mathbb{V}_1 - j30\angle 30^{\circ} + 2\mathbb{V}_1 - 2\mathbb{V}_o + \mathbb{V}_1 - \mathbb{V}_o = 0 $$ $$ j5\mathbb{V}_1 + \Big[30\angle(-90^{\circ})\Big]\Big[1\angle 30^{\circ}\Big] + 2\mathbb{V}_1 - 2\mathbb{V}_o + \mathbb{V}_1 - \mathbb{V}_o = 0 $$ $$ j5\mathbb{V}_1 + 30\angle (-60^{\circ}) + 2\mathbb{V}_1 - 2\mathbb{V}_o + \mathbb{V}_1 - \mathbb{V}_o = 0 $$ $$ -3\mathbb{V}_o + \mathbb{V}_1(3+j5) = -30\angle (-60^{\circ}) $$

$$ -3\mathbb{V}_o + 5.831\mathbb{V}_1 \angle 59.04^{\circ} = 30\angle 120^{\circ} \qquad,(I) $$

Apply Kirchoff's Current Law (KCL) at node 2:

$$ \frac{\mathbb{V}_o-\mathbb{V}_1}{10,000} + \frac{\mathbb{V}_o}{-j2,000} = 0 $$ Multiplying the above expression by 10,000 gives us: $$ \mathbb{V}_o - \mathbb{V}_1 + j5\mathbb{V}_o = 0$$ $$ \mathbb{V}_o(1+j5) - \mathbb{V}_1 = 0 $$ $$ 5.1\mathbb{V}_o \angle 78.69^{\circ} - \mathbb{V}_1 = 0 $$

$$ \mathbb{V}_1 = 5.1\mathbb{V}_o \angle 78.69^{\circ} \qquad,(II) $$

Substitute equation (II) into equation (I):

$$ -3\mathbb{V}_o + \Big( 5.831\angle 59.04^{\circ} \Big)\Big( 5.1\mathbb{V}_o \angle 78.69^{\circ} \Big) = 30\angle 120^{\circ} $$ $$ -3\mathbb{V}_o + 29.74\mathbb{V}_o \angle 137.7^{\circ} = 30\angle 120^{\circ} $$ $$ 32.02\mathbb{V}_o \angle 141.3^{\circ} = 30\angle 120^{\circ} $$

$$ \mathbb{V}_o = 0.9369 \angle (-21.3^{\circ}) \qquad,Final \; answer \; for \; \mathbb{V}_o $$

Determine Io:

By examining the circuit and noting the direction of current flow for Io we see that: $$ \mathbb{I}_o = \frac{\mathbb{V}_1-\mathbb{V}_o}{20,000} $$ Substitute equation (II) into the above expression: $$ \mathbb{I}_o = \frac{5.1\mathbb{V}_o\angle 78.69^{\circ} - \mathbb{V}_o}{20,000} $$ $$ = \frac{5.001\mathbb{V}_o\angle 90^{\circ}}{20,000} $$ Substitute our recently determined value for Vo into the above expression: $$ \mathbb{I}_o = \frac{\Big[ 5.001\angle90^{\circ} \Big] \Big[0.9369\angle (-21.3^{\circ}) \Big]}{20,000} $$ $$ = \frac{4.685 \angle 68.7^{\circ}}{20,000} $$

$$ \mathbb{I}_o = (234.3 \angle 68.7^{\circ}) \mu A \qquad,Final \; answer \; for \; \mathbb{I}_o$$

We shall now look at a couple of applications of op-amp circuits, starting with capacitance multipliers:

Continue on to capacitance multiplying circuit...